CHAPTER

Programming Strategies
for Small Devices

the way in which you code your applications. Before we move on to dis-
cussing specific Java implementations that are aimed at small devices,
let’s take some time to develop some general programming strategies for
small devices.

The limitations that are inherent in small devices require you to change

If in Doubt, Do Not Use Java

The first strategy to consider is simple, if perhaps a bit heretical. You
should avoid using Java until you are sure that it meets your applica-
tion requirements—not only in features, but in performance. This state-
ment might seem obvious, but becoming blinded by all of the hype that
accompanies Java and the enthusiasm that it generates is easy. A pro-
grammer who codes in Java on desktop or server systems is under-
standably reluctant to abandon Java when moving to smaller devices,
but this reluctance is detrimental to the project.

52 CHAPTER 3

The reality is that Java on small devices is still an immature technology
with a lot of room to improve and evolve, as we will see later in this
book when we discuss the individual specifications and implementa-
tions associated with the Java 2 Micro Edition (J2ME). Possibly, the
Micro Edition meets your needs today, or perhaps it does not. There
may also be new licensing issues to deal with if you need to include a
Java runtime environment with your application.

If you absolutely want to use Java, start with a simple, non-critical proj-
ect. Writing your mission-critical software in Java is not the way to
experiment with a device’s Java support. You should instead bite the
bullet and write your software by using C/C++.

We are not saying that Java is not a viable programming language.
Rather, the technology is so new that not all devices will support it—
and device limitations on central processing unit (CPU) speed and
memory capacity might not make it possible to write Java applications
that run (or run with acceptable performance) within those limits. For
example, the initial beta releases of the KVM—which is a small Java
interpreter that we will discuss later—is a key part of the Micro Edition
and could not deal with programs larger than 64K when running on
Palm devices. This situation made it difficult to write serious applica-
tions that could run in that environment.

Move Computation to the Server

Once you have decided to take the plunge with Java, the next strategy
is almost as simple: avoid running computationally intensive tasks on
the device. Instead, let a server computer run them for you. The alter-
native is to tie up the device (potentially even making its user interface
unresponsive) for several seconds or minutes—delays that your users
will find unacceptable. In many ways, this process is similar to deploy-
ing a thin-client Web application where most of the logic is in the Web
server, leaving the Web browser to handle the user interface.

Finding the right balance between what to do with the device and what
to do on the server is tricky and depends on both the application and
the device’s connectivity. Obviously, a device that has a wireless radio
can connect to a server more often than a device that has only cradle-
based communication. But the cradle-based communication is faster

Programming Strategies for Small Devices 53

and essentially free, while wireless communication can be slow and
expensive. Therefore, even if you can connect to the server on an as-
needed basis, it might be time-prohibitive or cost-prohibitive to down-
load large amounts of data.

Letting the server do some of the work does not have to be compli-
cated. Even simple things that are done on the server can make a big
difference in your application’s responsiveness. For example, rather
than downloading data from the server and sorting it on the device, let
the server sort it for you. The download time will not improve, but you
will save the time that your application spent sorting the data after the
download. Later, after changes have been made to the data, the applica-
tion can resort the data—and you will benefit because the data will be
in near-sorted condition already.

Of course, in many cases you have no choice but to partition the appli-
cation between the device and a server. Often, there is just too much
data to put on the device itself, or else the data is too sensitive to leave
on an unsecured machine.

Simplify the Application

After moving as much as you can to the server, the next step is to sim-
plify the application. This step is best done during application design,
of course, and as usual, some work and prototyping ahead of the actual
coding will save you time and work later.

The most obvious simplification for your application is to remove
unnecessary features. Consider each feature of your application care-
fully. Is this feature really needed, or could users get by without it?
Removing code is the simplest way to reduce the size of an application.

If you need a feature only occasionally, consider moving it and similar
features into a second, auxiliary application. Users can then remove the
auxiliary application if they do not need those features.

Internationalized programs are often large because of all of their
resources—text strings, bitmaps, and other locale-sensitive data—
which are required to support various national, linguistic, and cultural
scenarios. For desktop programming, it is common to ship a single ver-
sion of the application that can handle the different locales transparently.

54 CHAPTER 3

Performing this task in Java is quite easy because of its support for
resource bundles, formatters, and other locale-sensitive classes. The
resources are often located and loaded dynamically, based on the cur-
rent locale. As an optimization, the application installer often installs
the files for a single locale, because this procedure cuts down on the
disk space that the application requires. While a desktop system’s total
storage capacity is large, it is not infinite. To save space, then, you will
want to use a similar strategy and build separate versions of your appli-
cation for each locale, instead of relying on automatic locale detection
and adaptation.

After removing unnecessary features, the next step is to reuse the user
interface wherever possible. A large portion of an interactive applica-
tion is spent dealing with the user interface. Look for opportunities to
reuse parts of the user interface whenever possible. Not only does this
reuse make the application smaller, but it makes it easier for the user to
learn the application.

Finally, try to provide a single-action path for each feature. Use simple,
consistent, and unique ways to invoke particular features. This
approach is less confusing for your users, and there is less code for you
to write. Also, this approach forces you to look carefully at your overall
user-interface design. You should always group the commonly used fea-
tures so that they are quickly accessible by users with as few button/
key presses or pen strokes as possible.

Do not forget, though, that you will have different kinds of users. As
you simplify your application, be sure to leave in the shortcuts and fea-
tures that your power users will appreciate. If you think that this advice
seems contradictory, you are right. Everything is a delicate balancing
act. You cannot remove everything from your application, after all. It is
really just a matter of fine-tuning its features for smaller devices.

Build Smaller Applications

Another step that you can take is building smaller applications. A
smaller application takes up less memory on the device and requires
less time to install. This type of application will usually require a
shorter startup time as well, especially with a language such as Java

Programming Strategies for Small Devices 55

where a significant part of the startup time is spent verifying and other-
wise preparing the individual classes that an application requires.
Smaller applications are also cheaper to install if you happen to be
downloading it onto the device via a wireless network.

For installation purposes, you want to package your Java applications
as compressed Java Archive (JAR) files whenever possible. This tech-
nique is the most obvious way to build a smaller application, but it does
increase the load time for the application because of the time that is
required to decompress the individual class files. You might have no
choice, however. A JAR file might be the only packaging that is accept-
able to the runtime environment. (If startup time is an issue, try building
an uncompressed JAR file and determine whether that helps. It might be
worth the extra cost in terms of memory footprint and installation/
download time.)

To further reduce the size of your application, consider using a tool
called an obfuscator. An obfuscator makes the code and the symbolic
information in your class files harder to read by converting identifiers
to short, undistinguished character sequences and by performing other
tricks that still result in a legal class file. A side effect of the obfusca-
tion is a reduction in the size of the final class file. Most obfuscators
will also remove unnecessary and unused methods and classes, which
of course leads to further savings in class-file size. You will find some
freely available obfuscators on the book’s companion Web site.

Remove the Public Members

As a rule, obfuscators will not remove public members (fields or methods) of a
class, because other classes might call those members. If you think about it, the
only members that are safe to remove are private members. If you are building a
complete application that safely stands by itself, however, you can usually tell the
obfuscator to consider the classes that your application uses to be a closed set of
classes. You can also tell it to treat any public, package, or protected members as
if no one outside the closed set will refer to them. This technique enables the
obfuscator to remove more code than it would normally be capable of removing.
Still, your best bet is to make as many members as you can private. The fewer
public members you have, the easier it is to optimize the code.

56 CHAPTER 3

Of course, reducing the number of classes that your application uses is
really the simplest way to reduce its memory footprint. Remember that
every class or interface that you create generates a separate class file,
including nested, inner, or (especially) anonymous classes.

Use Less Memory at Run Time

As we have discussed, the runtime memory capacity of a small comput-
ing device can be quite limited. Sometimes these limits are not obvious,
however. For example, the Palm operating system (OS) defines two
kinds of memory: dynamic and storage. Dynamic memory stores the
application’s runtime data—in particular, its stack and its runtime
memory heap. Storage memory is write-protected, persistent memory.
The amount of dynamic memory available to an application varies from
32K to 256K, and the remainder of the device’s RAM is storage memory.
Even if a device has SMB of RAM, the 256K limit on dynamic memory is
important. If more memory is required, the application must use stor-
age memory, which is slower to access due to the write protection.

What follows are some simple tips and examples of how to reduce the
amount of runtime memory that your Java applications use.

Use Scalar Types

Each object that you use must be allocated from the runtime memory
heap. There is no way to declare objects that are allocated on the stack.
The object’s constructor runs as part of that allocation process. There-
fore, each object that you allocate impacts your application’s perfor-
mance as well as the amount of memory that it requires. To reduce the
number of objects that are allocated, consider using scalar types—the
non-object types such as int and boolean —in place of objects when-
ever possible.

Consider the methods of java.awt.Component as an example.
These methods define two variants of the setSize method:

public void setSize(int width, int height);
public void setSize(Dimension size);

Programming Strategies for Small Devices 57

The first variant takes only scalar types, while the second one requires
you to allocate a Dimension object. When you call the first variant,
you generate a bit more code—but you avoid an object allocation.
Besides, the second variant is defined as follows:

public void setSize(Dimension size){
setSize(size.width, size.height);

}

Although a call to the second variant is a bit cheaper in terms of byte-
code generation, you end up executing more code in addition to incur-
ring the object-allocation expense.

Do Not Depend on
the Garbage Collector

As we saw in the previous chapter, the garbage collector is an impor-
tant part of the execution engine. Without it, Java programmers would
have to explicitly free allocated objects, which adds complexity to pro-
grams and requires the use of object-management schemes such as ref-
erence counting. The garbage collector frees you from having to worry
about who is using an object and about determining if the memory can
be reclaimed by the system.

Although a garbage collector is handy, it does not excuse you entirely
from the memory-management process. If you allocate too many
objects too quickly, the garbage collector might have trouble keeping
up and collecting unreferenced objects. Your application might pause
at inopportune times as the garbage collector works to catch up. Also,
as the peak memory usage increases, the execution engine will grab
more and more memory from the system in order to allocate objects.
When the garbage collector finally catches up, that memory is rarely (if
ever) returned to the system, even if most of it is not required by the
application anymore. This memory is now effectively unavailable for
use by other applications.

Help the Garbage Collector

Be sure to help the garbage collector do its work by setting object ref-
erences to null whenever you are finished with them. For example,

CHAPTER 3

you might define a deinitialize method for a class in order to
explicitly clear out its members:

public class MyClass {
private Object someObject;

public MyClass(Object obj){
someObject = obj;

}

public void deinitialize()}{
someObject = null;

}

By clearing out object references, you make it easier for the garbage
collector to find and reclaim unreferenced objects. This technique is
simple and does not add too much code to your classes.

Another way to help the garbage collector is to use weak references,
which premiered in Java 2. Weak references are instances of special
system classes that reference objects that you would like to keep active
and in memory but that can be garbage collected by the system if nec-
essary in order to free some memory. Weak references are not usually
supported on small devices, however, so you should not depend on
their presence.

Watch out for garbage-collection bugs. Sun’s garbage collector in Java
1.1, for example, prematurely frees singleton objects (objects that are
supposed to be created only once and that are stored in a static class
member) if the singletons are not referenced from an active thread. The
workaround in this case is to start a thread that does nothing except
keep a reference to the singleton.

Use Lazy Instantiation

Another technique to reduce overall and peak memory usage is to only
allocate objects as they are needed. We usually refer to this technique
as lazy instantiation. In this approach, you check for a null object refer-
ence (remember that Java guarantees that the members of a class are
always initialized to a default value, which makes it easy to perform
this kind of check):

Programming Strategies for Small Devices 59

public class LazyClass {
private Vector v; // defaults to null

public Vector getVector(){
if(v ==null') v = new Vector();
return v;

If you are using multiple threads, however, be sure to use the double
check technique described later to ensure that only one object ever
gets created.

Release Resources Early

Whether you are writing for small devices or for desktop systems, it
makes sense to release resources—database connections, network
connections, files, and so on—as soon as possible. Do not hang onto
them longer than necessary. Not only does this procedure free the
resource for use by another application, but it also enables the system
to free any memory associated with that resource.

In particular, do not depend on finalizers to free resources. Finalizers
might never run, and as we will see later, they are not even supported
by some Java interpreters. Always provide methods for explicitly free-
ing the resources, and document their use. If your Java platform does
support finalizers, however, it is still a good idea to define finalizers for
each resource-using class just to ensure that the resources are really
freed (in case the programmer forgot to release them).

Reuse Objects

One technique that can pay good dividends is to reuse objects instead
of continually allocating and abandoning them. Basically, what you
want to do is provide methods to initialize and deinitialize an object
and provide a way to cache unused objects. Consider the following
class, for example:

public class ObjHolder
{

private Object _value;

60

CHAPTER 3

public ObjHolder(Object value)

{
_value = value;
}
public Object getValue()
{
return _value;
}

This class is trivial but is enough of an example for our purposes. First,
we modify it by adding initialization and deinitialization methods:

private void initialize(Object value)

{

_value = value;

}

private void deinitialize()

{

_value = null;

}

Then, we modify the constructor by making it private and by having it
call the initialize method:

private ObjHolder(Object value)
{

initialize(value);

}

We could also choose to keep the constructor public or simply define a
no-argument version that does not call the initialize method.
Because we have chosen to make the constructor private, we have to
provide a static function to create one for us. This static function will
also keep a cache of objects for us, which for simplicity, we will limit to
a single object at a time:

private static ObjHolder _cache; // single object cache

public static synchronized ObjHolder allocate(Object value)
{
ObjHolder holder = _cache;
if(holder == null){
holder = new ObjHolder(value);
}else {

Programming Strategies for Small Devices 61

holder.initialize(value);

}
_cache = null;
return holder;

Also, of course, we will define an equivalent function to place objects
back into the cache:

public static synchronized void deallocate(ObjHolder holder)

{
holder.deinitialize();
if(_cache == null){
_cache = holder;

}

Objects of this class are now allocated and freed by using this
sequence:

ObjHolder holder = ObjHolder.allocate(somevalue);
..... /I use it

ObjHolder.deallocate(holder); // free it!

Be careful with the size of your cache. If it is too large, then your class
will be holding references to objects whose memory could otherwise
be reclaimed. The size of the cache depends on the application, and
you might not be able to determine an appropriate size except by run-
ning the application and gathering some statistics.

If your cache needs to be thread-safe, as in the previous example, you
will also pay a time penalty because of the synchronization primitives
that you need to use. Therefore, if you can guarantee that a single
thread will use the cache, you will be better off and will be able to
avoid the synchronization overhead.

Avoid Exceptions
Java’s built-in support for exception handling is extremely convenient.

Exceptions are sometimes overused, however. In general, you want to
reserve exceptions for unusual or unexpected (exceptional) situations.

62 CHAPTER 3

Errors that are expected to occur in the normal course of running an
application should be handled through other means. By avoiding excep-
tions, you can reduce the size of the class files and also reduce the
number of objects that are allocated (because each exception throws
an exception object).

Code with Performance in Mind

With a small device, performance is critical. Always write your code
with performance in mind. Here are a few suggestions to explore. You
can also consult any book on good coding practices for more tips,
because a lot of these books are independent of any particular pro-
gramming language. Also, do not forget to use the Java compiler’s
optimization options for producing tighter code.

Use Local Variables

It is generally slower to access class members than to access local vari-
ables. If you are using the same class member over and over, such as
within a loop, it might make sense to assign the value to a temporary
variable stored on the stack and to use that temporary variable in place
of the class member. Again, be careful when dealing with data that is
shared by multiple threads. This optimization might not make sense.

Using local variables also makes sense when dealing with arrays. Each
time an array element is accessed, the Java interpreter performs a
bounds check in order to ensure that the array index is valid. If you
access the same array element more than once, store it in a local vari-
able and access it from there instead. For example, instead of:

Char[] buf =; // get an array somehow

for(inti=0; i< buf.length; ++i){
if(buf[i] >='0" && buffi] <='9" {

} else'i%l(buffi] == \r' || buf[i] == \n' }{

}

Programming Strategies for Small Devices 63

Use a local variable to reduce the number of references to buf[i]

for(inti=0;i < buf.length; ++i){
Char ch = buffi];
if(ch >='0' && ch <='9")}{

}elseif(ch =="\r" || ch =="\n"){

}

Avoid String Concatenation

Java makes it easy to build strings by concatenation. In other words, it
is natural to do this kind of coding;:

public String indent(String line, int spaces){
String out ="";
for(inti=0; i< spaces; ++i){
out+=""

}

return out;

From a performance viewpoint, however, this coding is extremely poor.
String concatenation involves creating a new StringBuffer object,
calling its append method, and then calling its toString method in
order to obtain the final string. Concatenation inside a loop (as shown
earlier) can lead to the creation of many short-lived String and
StringBuffer objects, which not only affects performance but can
also increase the application’s peak memory usage. The better solution
is to do most of the work yourself, as in this example:

public String indent(String line, int spaces }{
StringBuffer out = new StringBuffer();
for(inti=0; i< spaces; ++i){
out.append('"');
}

return out.toString();

This simple change can drastically reduce the number of objects that
are created.

64

CHAPTER 3

Use Threads, but Avoid
Synchronization

Threads are an important part of Java, and your application should take
advantage of them whenever possible. The usual rule is that any opera-
tion that will take more than a tenth of a second to run should run on a
separate thread so that it will not block the user interface. User inter-
face responsiveness is extremely important on a small device—even more
so than on a desktop system—because users are less forgiving. Also, the
instant-on capability of the device is one of its important features.

If you do use threads, though, you have to control access to shared
data. You can perform this task with the synchronized keyword, but
there is added overhead (quite significant overhead in most cases)
when obtaining a lock on the object in question. Sometimes it is hard to
avoid this overhead. Many of the common data structures, such as
java.util.Vector and java.util. Hashtable , use synchronized
methods to be thread-safe. If you can ensure that only a single thread at
a time will ever access the data in a class, then you can do away with
synchronization. You can perform this task by writing your own ver-
sions of these classes or by using the unsynchronized Java 2 equiva-
lents like ArrayList or HashMap if your platform supports them. You
can gain a bit of performance that way.

To use lazy instantiation in a multithreaded situation, you must be sure
to perform a double check as follows:

private Vector v = null;

public Vector getVector() {
if(v == null){ // first check
synchronized(this){
if(v == null){ // second check
v = new Vector();

}
}

return v;

}

Because the Vector class is already thread-safe, there is really no
need to make getVector a synchronized method. If the vector has
already been created, we just return it and let it deal with any synchro-

Programming Strategies for Small Devices 65

nization issues. This action is what the first check for null performs.
The only thing we have to worry about is the creation of the vector. If
the first check fails, we immediately synchronize on an object that is
handy (typically, the object’s this reference for instance methods or
else the Class object for static methods), then perform a second
check. If two or more threads make it past the first check, only the first
one will fail the second check and create the object. The other threads
will pass the second check and return the newly created object.

Separate the Model

When you write an application for small devices, you have to adapt
your user interface to each device’s form factor. A common technique
for dealing with this problem is to separate the logic of the application
from the code that controls the presentation—a technique formally
referred to as the model-view-controller (MVC) technique.

An Introduction to MVC

The MVC technique factors an application into three different parts: a
model, a view, and a controller. The model is the data held by the appli-
cation and the code that deals specifically with the data. In a text edi-
tor, for example, the model is the text being edited. The view is a
representation of the model, typically drawn on a screen but not neces-
sarily limited to display output. Although there is only one model, there
can be more than one view—and each view can represent the model in
different ways. A spreadsheet, for example, can display data by using a
grid-based tabular format or as a chart. Each is a different view of the
same basic data. The controller interprets external input, usually from
a user, to modify the model or the view. In a three-dimensional render-
ing application, for example, the controller can interpret the user’s
mouse movements in order to rotate a rendered image back and forth.

MVC originates from the Smalltalk language and has been the subject
of numerous academic discussion papers. One of the criticisms leveled
against it is that it is too hard to separate the view from the controller,
because the input and the output are too closely linked in most sys-
tems. This concern led to the development of a simplified MVC that
combines the view and the controller into a presentation, keeping only

66 CHAPTER 3

the model separate. Instead of having multiple views, an application
has multiple presentations. This simplified form of MVC is often
referred to as user-interface delegation. (If the concept seems familiar
to you, it is because the Swing user-interface classes make extensive
use of user-interface delegation.)

Why Separate the Model?

Separating models and presentations takes some effort. Why go
through the trouble, especially if your application only uses a single
view/presentation?

As we saw in the first chapter, small devices come in a variety of differ-
ent form factors and support a wide variety of different output and
input methods. If you separate the model and the presentation, you will
find it easier to adapt—or possibly rewrite—your user interface code to
work on different devices. It is not necessarily a given that you will
need to rework the user interface, but it is certainly a possibility. Sepa-
rating the model means that you will not have to rewrite the entire
application.

How to Build a Model

You build a model by creating a separate class to hold the data. That
class then exposes methods that the other parts of the application (the
presentation) use to access and modify the data. The class also triggers
events to notify presentations whenever the external state—the data
that the presentations can see and use—of the model changes.

You should note that the model must not directly expose any data
members; otherwise, it cannot track changes to the data. In other
words, do not define a class in this way:

public class Model {
public int x;
public inty;

}

Instead, define accessor methods that can then trigger events to broad-
cast changes to the data:

Programming Strategies for Small Devices 67

public class Model {
private int x;
private inty;

public int getX() { return x; }
public int getY() { returny; }

public void setX(int x){
this.x = x;
notifyListeners(); // broadcast the change

}

public void setY(inty){
this.y =y;
notifyListeners(); // broadcast the change

}

/I other methods for listener registration, notification, etc.

Presentations are notified of changes by using whichever event model
is convenient. Normally, you would use an event listener model similar
to the Abstract Windowing Toolkit (AWT) event model introduced in
Java 1.1. A listener interface defines the methods that the model
invokes in order to trigger an event:

public interface ModelListener {
void modelChanged(Model m);

}

Any presentation that is interested in receiving updates from the model
then implements the interface and registers itself with the model:

public class Presentation implements ModelListener {
public Presentation(Model model){
model.addListener(this);

}

public void modelChanged(Model m }{
/I do something in response to the event

}

The model defines a public registration method and a private notifica-
tion method:

68

CHAPTER 3

public class Model {
..... /I other methods previously discussed
private Vector listeners = new Vector();

public addListener(ModelListener |)}{
listeners.addElement(1);

}

private void notifyListeners(){
Enumeration e = listeners.elements();
while(e.hasMoreElements() }{
((ModelListener) e.nextElement()).modelChanged(this);

}
}

Whenever the model changes, it calls its private notification method(s).
There might be several different events that can be triggered, depend-
ing on how you design the listener. This method(s) notifies the presen-
tations, which will usually update their own states by using the new
data.

Think carefully about multithreading and performance issues when
designing your event model, and apply all of the techniques that we
have discussed so far to make sure that the event dispatching does not
become a bottleneck in your application’s performance.

The Tic-Tac-Toe Example

Later in Part 3 of this book, we will build a simple tic-tac-toe game by
using different Java implementations. Tic-tac-toe is a simple grid-based
game where two players take turns filling in cells with their own color
or character (usually X and O characters). The first player to com-
pletely fill a row (horizontal, vertical, or diagonal) with his or her
color/character wins. If all of the cells are filled before either player
wins, the game ends in a tie.

Tic-tac-toe is really a children’s game, because the game almost always
ends in a tie if played by two adults. The game is complicated enough,
however, to serve as a useful example of small-device Java program-
ming. Tic-tac-toe also enables us to demonstrate a real-world, model-
presentation, separation scenario. The game logic is encapsulated into

Programming Strategies for Small Devices 69

a single class (the TicTacToeModel class),which we will reuse in
each version of the application. What follows are highlights of the tic-
tac-toe model, which you will need to understand in order to follow the
game as we write it. Refer to Appendix A for a complete listing of the
class. You will also find it on the CD-ROM that accompanies this book.

First, we define the constructor for our class:

public TicTacToeModel(int size){
newGame (sized)}

In the spirit of generalization, we will define the tic-tac-toe model by
using a variable grid size. The minimum value that we will accept is 3,
and the maximum is 6. This minimum and maximum will be controlled
by the newGamemethod that we will define later.

The model uses an array in order to represent the cells:

private byte[] cells;

This array is allocated at run time by newGame Notice that we avoid
using a two-dimensional array and thereby avoid the extra overhead of
managing the array of arrays and accessing the individual elements.
Each cell in the grid is mapped to an element in the cells array, start-
ing at the top of the grid and going left to right and top to bottom. Thus,
in a 3-by-3 grid (nine cells total), the top-left cell has index 0; the top-
right cell has index 2; the bottom-left cell has index 6; and the bottom-
right cell has index 8.

What goes in each cell? The answer is a value that indicates whether
the cell is empty or filled by one of the two players. We therefore define
some constants in order to indicate each state:

public static final int NO_PLAYER = 20;
public static final int PLAYER_1 = 1,
public static final int PLAYER_2 = -1;

Why define the values this way? By summing the values in a sequence
of cells (which can be six cells at most), we can quickly determine
whether there are any empty cells in the sequence or whether one of
the players has completely filled each cell in the sequence. Take a grid
of size 4 as an example. Player 1 wins the game if any sequence sums to
4 (4 * PLAYER_1), while Player 2 wins if any sequence sums to — 4

70

CHAPTER 3

(4 * PLAYER_2). Also, if the sum is greater than 4, then the sequence
contains at least one empty cell.

The sums are themselves stored in an array called totals , which is
also allocated by newGame

private int[] totals;

The size of the totals array is always 2*n+2, where n is the game size
(because there are n horizontal rows, n vertical rows, and two diagonal
rows in any game). By storing the sums, we only need to recalculate
them every time a cell value is changed (by using the calculateTo -
tals method):

private void calculateTotals(){

intindex = 0;
for(inti=0; i <numTotals; ++i }{
int total = 0;

for(intj = 0; j < cellsPerRow; ++j){
total += cells[rowIndices[index++]];

}

totals[i] = total;

The numTotals and cellsPerRow fields are defined as part of the
newGameinitialization. The initialization also creates a one-dimensional
array called rowindices that stores the cell indices for each of the
2*n+2 rows:

public void newGame(){
newGame(3);

}

public void newGame(int size }{
if(size < 3 || size > 6){
size = 3;

endGame();

cellsPerRow = size;

numcCells = size * size;
numTotals = 2 * size + 2;
playerlWins = size * PLAYER_1;
player2Wins = size * PLAYER_2;

Programming Strategies for Small Devices 71

if(cells == null || cells.length < numCells){
cells = new byte[numCells];

}
inti;

for(i=0; i< numCells; ++i){
cells[i] = NO_PLAYER;
}

if(totals == null || totals.length < numTotals){
totals = new int[numTotals];

}

int initial = cellsPerRow * NO_PLAYER,;

for(i=0; i< numTotals; ++i }{
totals[i] = initial;

}

calculatelndices();
gameStarted = true;
notifyGameStarted();

The actual cell indices are calculated by calculatelndices , and we
will leave the details of this process for Appendix A. newGamealso
defines numCells , playerlWins , and player2Wins and sets
gameStarted to true in order to indicate that a game is in progress.

Of course, calculateTotals will never be called unless we provide
methods to set the value of a cell:

public void setCellState(int row, int col, int value){
setCellState(row * cellsPerRow + col, value);

}

public void setCellState(int index, int value){
if(\gameStarted || index < 0 || index >= numCells) return;
if(cells[index] '= NO_PLAYER) return;
cells[index] = (byte) value
calculateTotals();
notifyGameUpdated(index, value);
if(isGameOver() X
endGame();

}

72

CHAPTER 3

For convenience, we enable cell values to be set by row and column or
by index. Only empty cells can have their values set. After a cell is set,
we notify any listeners about the new value and check to see whether
the game is over. Listeners implement the TicTacToeModelLis -
tener interface, which defines these three methods:

void gameStarted(TicTacToeModel model);
void gameUpdated(TicTacToeModel model, int index, int value);
void gameOver(TicTacToeModel model);

The model class itself defines methods for notifying the listeners, as
with the notifyGameOver method:

private void notifyGameOver()}{
Enumeration e = listeners.elements();
while(e.hasMoreElements() {
((TicTacToeModelListener) e.nextElement()).notifyGameOver(this

);
}

Also, of course, TicTacToeModel defines an addListener method
just as we did previously, except with the additional feature that if a
game has already started, the newly registered listener is immediately
notified of this fact via the gameStarted method.

Finally, the model class defines methods such as isGameOver , get -
CellState , getWinner , and getWinningCells that listeners and
other interested parties can use to determine the status of a game.

Optimizing Event Notification

The TicTacToeModel class notifies listeners in a straight-forward fashion by
building an enumeration of registered listeners and cycling through that enumer-
ation. This process works well for our situation, because not many events are
triggered. If you are dealing with events that are triggered frequently, however,
you might want to change the notification code to use something other than an
enumeration and to perform other optimizations based on the number of regis-
tered listeners. As always, be sure to keep multithreaded programs in mind when
performing these optimizations; otherwise, an event that is triggered while
another thread is adding itself as a listener could cause an exception (because
the set of listeners is in flux).

Programming Strategies for Small Devices

73

The complexity of this model might surprise you. Perhaps tic-tac-toe is

not quite as simple as you thought. You will see the benefits of the

model when we write the actual game in Part 3.

Chapter Summary

In this chapter, we looked at some general strategies for small-device
programming, which finishes this first part of the book. The next part

introduces us to the JZME and the specifications that define this

application.

